Mixture of Experts for Persian handwritten word recognition

نویسندگان

  • F. Sharifizadeh MSc Student, Department of Mathematics and Computer Science, University of Tehran, P.O. Box 14155-6455, Enghelab Avenue, Tehran, Iran
  • R. Ebrahimpour Brain and Intelligent Systems Lab., Department of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University Lavizan, Tehran, Iran.
  • S. Sarhangi Department of Mechatronics , Islamic Azad University south Tehran Branch,Tehran,Iran
چکیده مقاله:

This paper presents the results of Persian handwritten word recognition based on Mixture of Experts technique. In the basic form of ME the problem space is automatically divided into several subspaces for the experts, and the outputs of experts are combined by a gating network. In our proposed model, we used Mixture of Experts Multi Layered Perceptrons with Momentum term, in the classification Phase. We produce three different Mixture of Experts structure. Experimental result for proposed method show an error rate reduction of 6.42 % compare to the mixture of MLPs experts. Comparison with some of the most related methods indicates that the proposed model yields excellent recognition rate in handwritten word recognition.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognition of Persian handwritten digits using Characterization Loci and Mixture of Experts

A method for recognition of Persian handwritten digits based on characterization loci and mixture of experts is proposed. This method utilizes the characterization loci, as the main feature. In the classification stage of our proposed method the mixture of experts are applied. This recognition method is applied to Farsi hand-written digits in the HODA database. The experimental results support ...

متن کامل

Persian handwritten digits recognition: A divide and conquer approach based on mixture of MLP experts

In pursuit of Persian handwritten digit recognition, many machine learning techniques have been utilized. Mixture of experts (MOE) is one of the most popular and interesting combining methods which has great potential to improve performance in machine learning. In MOE, during a competitive learning process, the gating networks supervise dividing input space between experts and experts obtain sp...

متن کامل

Holistic Farsi handwritten word recognition using gradient features

In this paper we address the issue of recognizing Farsi handwritten words. Two types of gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using the Self Organizing Map (SOM). In this method each word is modeled using the discrete Hidde...

متن کامل

Arabic Handwritten Word Recognition based on Bernoulli Mixture HMMs

This thesis presents new approaches in off-line Arabic Handwriting Recognition based on conventional Bernoulli Hidden Markov models. Until now, the off-line handwriting recognition, in particular, the Arabic handwriting recognition is still far away form being perfect. Hidden Markov Models (HMMs) are now widely used for off-line handwriting recognition in many languages and, in particular, in A...

متن کامل

Active Handwritten Word Recognition

An active word recognition paradigm using recursive recognition processing is proposed. To achieve successful recognition result with minimum required processing e ort, recursive system architecture which has active combination of a recognition engine and a decision making module is introduced. In the proposed model, a closed loop connection between recognizer and decision maker operates recurs...

متن کامل

Connected Component Based Word Spotting on Persian Handwritten image documents

Word spotting is to make searchable unindexed image documents by locating word/words in a doc-ument image, given a query word. This problem is challenging, mainly due to the large numberof word classes with very small inter-class and substantial intra-class distances. In this paper, asegmentation-based word spotting method is presented for multi-writer Persian handwritten doc-...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 7  شماره 4

صفحات  217- 224

تاریخ انتشار 2011-12

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023